HINDERED ROTATION OF PROTONATES OF AROMATIC ALDEHYDES.1

THE CHO: +H PSEUDOSUBSTITUENT

Mordecai Rabinovitz and Aviyakar Ellencweig²

Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel (Received in UK 17 September 1971; accepted for publication 15 October 1971)

We have recently reported the formation of stable BF₃ complexes of aromatic aldehydes and some of their properties.³ The establishment of the CHO: BF₃ group as a <u>pseudosubstituent</u> urged us to study the <u>protonates</u> of aromatic aldehydes I. We were particularly interested in finding out whether the group CHO: [†]H may be regarded as a pseudosubstituent and to compare it with the CHO: BF₃ group.⁴ A recent publication on the hindered rotation of three protonates of aldehydes⁵ prompted us to report our results of the nmr spectra and the barrier to rotation about the $C_{aryl}^{-1}C_{formyl}^{-1}$ bond of <u>para-substituted benzaldehyde protonates</u>. The expected relatively high barriers to rotation due to a partial π character of this bond (e.g., II) were evaluated by dynamic nmr and the heights of the barriers were found to be substituent dependent,⁴ and higher than the free⁶ and complexed⁷ aldehydes.

An intensive study⁸ of the basicity of benzaldehydes and acetophenones and of their pK_{BH}^+ values has shown that the chemical shifts of the added proton of the CHO: ⁺H group correlate well with Hammetts σ^+ constants of the substituents of the aromatic ring. The Table shows our results for the chemical shifts, coalescence temperatures and ΔG^* values for seven

benzaldehydes in a mixture of 90% v/v fluorosulfonic acid and 10% D_2O . The ΔG^* values at coalescence temperatures⁹ were correlated with Hammetts σ^+ constants¹⁰; the correlation¹¹ (equation (1)) clearly shows that the height of the barrier is substituent dependent.¹² The ΔG^*

$$\Delta G^* = -4.86 \, \sigma^+ + 14.4 \, \frac{\text{Kcal}}{\text{mole}}$$
 (1)
(N = 6, CC = 0.940, STD = 0.66 $\frac{\text{Kcal}}{\text{mole}}$; Slope = -4.8)

values did not correlate with σ constants. Comparison of the ΔG^* values of the free, 6 BF3complexed and the protonated aldehydes (Table) shows that the highest values are obtained for the protonates. This is probably due to the fact that the CHO: +H group is the only one bearing virtually a positive charge. As an illustration the protonate of 4-methoxybenzaldehyde(anisaldehyde) exhibits an ACBB' spectrum at the probe temperature (31.5°C), its coalescence temperature is +60°C and only at +80°C an AA'BB' spectrum is obtained. On the other hand the coalescence temperature of 4-fluorobenzaldehyde protonate is -17° C. Substituting $\sigma^{+}=0.0$ for benzaldehyde protonate the ΔG^* value is estimated to be 14.4 $\frac{Kcal}{mole}$ which corresponds to a coalescence temperature of -1°C. It should be noted that the height of the barrier is concentration dependent; the higher the concentration the lower the barrier. This is probably due to the formation of associates in the strong acidic medium. The ΔG* values at coalescence temperature of 4-methoxybenzaldehyde, 4-methoxyacetophenone and their protonates are: 9.9,6 6.5,8 $\frac{17.9}{\text{ and }}$ and $\frac{12.0}{\text{ mole}}$ respectively, and the corresponding values for 4-methoxybenzaldehyde-BF₃ complex and 4-methoxyacetophenone-BF₃ complex are 14.1 and 10.6 $\frac{\text{Kcal}}{\text{mole}}$ respectively. These results give an estimate of the electron withdrawing properties of the formyl groups of the free, protonated and BF3-complexed aromatic carbonyl compounds. The nmr formyl proton chemical shifts of the aldehyde-BF3 complexes correlated well (CC = 0.990)11 with the formyl protons of the protonates, thus showing that the CHO: +H group may be viewed as a pseudosubstituent of the aromatic ring.

TABLE: Nmr Data and Free Energies of the Barriers to Rotation in

Protonated Benzaldehydes.¹

formyl proton ²				Coalescence temperature (°C)	ΔG*, <u>Kcal</u> mole
	ν <u>A</u>	νв	۵۷		
876.0		739.1		-8	14.1
916.1	826.1	765.1	61.0	+29	16.1
873.3		752.2 ³		+60	17.9
907.1	830.1	767.2	62.9	+36	16.4
926.6		820.4 ³		-17	13.6
914.7	797.8	745	54.0	-11	13,9
916.5	989.6	755.4	33.2	-9	14.0
	916.1 873.3 907.1 926.6 914.7	916.1 826.1 873.3 907.1 830.1 926.6 914.7 797.8	916.1826.1765.1873.3 752.2^3 907.1830.1767.2926.6820.4 3 914.7797.8745	916.1 826.1 765.1 61.0 873.3 752.2 ³ 907.1 830.1 767.2 62.9 926.6 820.4 ³ 914.7 797.8 745 54.0	916.1 826.1 765.1 61.0 $+29$ 873.3 752.2^3 $+60$ 907.1 830.1 767.2 62.9 $+36$ 926.6 820.4^3 -17 914.7 797.8 745 54.0 -11

 $^{^1}$ At 100 MHz, in Hz from TMS, 0.3 M solutions in 90% v/v HSO3F (+ 10% D2O).

References

- 1. Complexes of Aromatic Aldehydes III; for part II see reference 3.
- 2. A. Ellencweig, M.Sc. thesis, submitted June 1971.
- 3. M. Rabinovitz and A. Grinvald, Tetrahedron Letters, 641 (1971).
- Presented, in part, at the Fourth International Symposium on Magnetic Resonance,
 Jerusalem, August 1971, Abstract D11a.
- 5. R. Jost, P. Rimmelin, and J. M. Sommer, Chem. Comm., 879 (1971).
- 6. F.A.L. Anet and M. Ahmad, J. Am. Chem. Soc., 86, 120 (1964).
- 7. A. Grinvald and M. Rabinovitz, Chem. Comm., 642 (1969).

² At probe temperature (+31.5°C).

³ Center of AA'BB' above coalescence.

- (a) R. Stewart and K. Yates, Can. J. Chem., 37, 664 (1959); (b) K. Yates and H. Way, Can. J. Chem., 43, 2123 (1965); (c) T. Birchall and R. J. Gillespie, Can. J. Chem., 43, 1045 (1965); (d) E. M. Arnett, R. P. Quirk and J. W. Larsen, J. Am. Chem. Soc., 91, 3977 (1970); (e) H. Hogeveen, Rec. Trav. Chim. Pays Bas, 86, 696 (1967); (f) R. E. Klinck, D. H. Marr, and J. B. Stothers, Chem. Comm., 409 (1967).
- 9. S. Gladstone, K. J. Laidler and E. Eyring, "The Theory of Rate Processes", McGraw-Hill, New York, 1941.
- 10. H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 80, 4979 (1958).
- 11. H. H. Jaffe, Chem. Rev., 53, 191 (1953).
- 12. These results were obtained from the relatively simple spectra of <u>para</u>-substituted benzaldehyde protonates, but this correlation also enables us to estimate the barriers of other protonates.